AFFINE CONNECTION IN AN L-CONTACT MANIFOLD

L K Pandey*

Abstract

In 1988, K. Matsumoto and I. Mihai [1] discussed on a certain transformation in a Lorentzian Para-Sasakian manifold. T. Suguri and S. Nakayama [3] considered D-conformal deformations on almost contact metric structure. In 1972, R.S. Mishra [2] discussed on affine connexion in an almost Grayan manifold. The purpose of this paper is to study D-conformal transformation in an L-Contact manifold. Affine connection in an L-Contact manifold has also been discussed.

Keywords: L-Contact structure, D-conformal transformation, affine connection.

[^0]
1. Introduction

An n-dimensional differentiable manifold M_{n}, on which there are defined a tensor field F of type (1, 1), a vector field T, a 1-form A and a Lorentzian metric g, satisfying for arbitrary vector fields X, Y, Z, \ldots

$$
\begin{align*}
& \overline{\bar{X}}=-X-A(X) T, \bar{T}=0, A(T)=-1, \bar{X} \stackrel{\text { def }}{=} F X, A(\bar{X})=0, \text { rank } F=n-1 \tag{1.1}\\
& g(\bar{X}, \bar{Y})=g(X, Y)+A(X) A(Y), \text { where } A(X) \stackrel{\text { def }}{=} g(X, T), \tag{1.2}\\
& ` F(X, Y) \stackrel{\text { def }}{=} g(\bar{X}, Y)=-g(\bar{Y}, X)=-` F(Y, X),
\end{align*}
$$

Then M_{n} is called a Lorentzian contact manifold (an L-Contact manifold) and the structure (F, T, A, g) is known as Lorentzian contact structure (an L-Contact structure).

Let D be a Riemannian connection on M_{n}, then we have

$$
\begin{equation*}
\left(D_{X} ` F\right)(\bar{Y}, Z)-\left(D_{X} ` F\right)(Y, \bar{Z})+A(Y)\left(D_{X} A\right)(Z)+A(Z)\left(D_{X} A\right)(Y)=0 \tag{1.3}
\end{equation*}
$$

(b) $\quad\left(D_{X}{ }^{`} F\right)(\bar{Y}, \overline{\bar{Z}})=\left(D_{X}{ }^{`} F\right)(\overline{\bar{Y}}, \bar{Z})$

$$
\begin{equation*}
\left(D_{X} ` F\right)(\bar{Y}, \bar{Z})+\left(D_{X} ` F\right)(Y, Z)+A(Y)\left(D_{X} A\right)(\bar{Z})-A(Z)\left(D_{X} A\right)(\bar{Y})=0 \tag{1.4}
\end{equation*}
$$

$$
\begin{equation*}
\left(D_{X} ` F\right)(\overline{\bar{Y}}, \overline{\bar{Z}})+\left(D_{X} ` F\right)(\bar{Y}, \bar{Z})=0 \tag{b}
\end{equation*}
$$

An L-Contact manifold is called an L-Cosymplectic manifold if

$$
\begin{equation*}
D_{X} F=0 \tag{1.5}
\end{equation*}
$$

2. D-conformal transformation

Let the corresponding Jacobian map J of the transformation b transforms the structure (F, T, A, g) to the structure (F, V, v, h) such that
(2.1) (a) $J \bar{Z}=\overline{J Z}$
(b) $h(J X, J Y) o b=e^{\sigma} \mathrm{g}(\bar{X}, \bar{Y})-e^{2 \sigma} A(X) A(Y)$
(c) $V=e^{-\sigma} J T$,
(d) $v(J X) o b=e^{\sigma} A(X)$,

Where σ is a differentiable function on M_{n}, then the transformation is called D-conformal transformation.

If σ is a constant, the transformation is known as D -homothetic.
Theorem 2.1 The structure (F, V, v, h) is Lorentzian contact.
Proof. Inconsequence of (1.1), (1.2), (2.1) (b) and (2.1) (d), we have

$$
\begin{aligned}
h(J \bar{X}, J \bar{Y}) o b=e^{\sigma} \mathrm{g}(\bar{X}, \bar{Y})= & h(J X, J Y) o b+e^{2 \sigma} A(X) A(Y) \\
& =h(J X, J Y) o b+\{v(J X) o b\}\{v(J Y) o b\}
\end{aligned}
$$

This implies

$$
\begin{equation*}
h(J \bar{X}, J \bar{Y})=h(J X, J Y)+v(J X) v(J Y) \tag{2.2}
\end{equation*}
$$

Making the use of (1.1), (2.1) (a), (2.1) (c) and (2.1) (d), we get

$$
\begin{equation*}
\overline{\overline{J X}}=J \overline{\bar{X}}=-J X-A(X) J T=-J X-\{v(J X) o b\} V \tag{2.3}
\end{equation*}
$$

Also

$$
\begin{equation*}
\bar{V}=e^{-\sigma} \overline{J T}=0, \tag{2.4}
\end{equation*}
$$

Equations (2.2), (2.3) and (2.4) prove the statement.
Theorem 2.2 Let E and D be the Riemannian connections with respect to h and g such that
(a) $E_{J X} J Y=J D_{X} Y+J H(X, Y)$
(b) ` $H(X, Y, Z) \stackrel{\text { def }}{=} g(H(X, Y), Z)$

Then

$$
\begin{equation*}
2 J D_{X} Y-J\left[2 e^{\sigma}\left\{(X \sigma) A(\mathrm{Y}) T+(\mathrm{Y} \sigma) A(\mathrm{X}) T-\left({ }^{-1} \mathrm{G} \nabla \sigma\right) A(\mathrm{X}) A(\mathrm{Y})\right\}+\left(e^{\sigma}-\right.\right. \tag{2.6}
\end{equation*}
$$

$$
1 D X A Y+D Y A X-\quad 2 A H X, Y T+e \sigma-1 A X D Y T+A Y D X T-A X(-1 G \nabla A) Y-A Y(-1 G \nabla A) X]
$$

Proof. Inconsequence of (2.1) (b), we have

$$
J X(h(J Y, J Z)) o b=X\left\{e^{\sigma} \mathrm{g}(\bar{Y}, \bar{Z})-e^{2 \sigma} A(Y) A(Z)\right\}
$$

From (2.1) (b) and (2.5), we have

$$
\begin{equation*}
h\left(E_{J X} J Y, J Z\right) o b+h\left(J Y, E_{J X} J Z\right) o b=e^{\sigma} \mathrm{g}\left(\overline{D_{X} Y}, \bar{Z}\right)-e^{2 \sigma} A\left(D_{X} Y\right) A(Z)+ \tag{2.7}
\end{equation*}
$$

$$
e^{\sigma} \mathrm{g}(\overline{H(X, Y)}, \bar{Z})-e^{2 \sigma} A(H(X, Y)) A(Z)+e^{\sigma} \mathrm{g}(\bar{Y}, \overline{H(X, Z})-e^{2 \sigma} A(Y) A(H(X, Z))+
$$

$$
e^{\sigma} \mathrm{g}\left(\bar{Y}, \overline{D_{X} Z}\right)-e^{2 \sigma} A\left(D_{X} Z\right) A(Y)
$$

Also

$$
\begin{aligned}
& h\left(E_{J X} J Y, J Z\right) o b+h\left(J Y, E_{J X} J Z\right) o b=(X \sigma) e^{\sigma} \mathrm{g}(\bar{Y}, \bar{Z})+e^{\sigma} \mathrm{g}\left(D_{X} \bar{Y}, \bar{Z}\right)+e^{\sigma} \mathrm{g}\left(\bar{Y}, D_{X} \bar{Z}\right)- \\
& 2(X \sigma) e^{2 \sigma} A(Y) A(Z)-e^{2 \sigma}\left(D_{X} A\right)(Y) A(Z)-e^{2 \sigma}\left(D_{X} A\right)(Z) A(Y)-e^{2 \sigma} A\left(D_{X} Y\right) A(Z) \\
& \quad-e^{2 \sigma} A\left(D_{X} Z\right) A(Y)
\end{aligned}
$$

Equations (1.3) (a), (2.7) and (2.8) imply

$$
\begin{align*}
& (X \sigma) \mathrm{g}(\bar{Y}, \bar{Z})-2(X \sigma) e^{\sigma} A(Y) A(Z)-\left(e^{\sigma}-1\right)\left\{\left(D_{X} A\right)(Y) A(Z)+\left(D_{X} A\right)(Z) A(Y)\right\}= \tag{2.9}\\
& ` H(X, Y, Z)+` H(X, Z, Y)-\left(e^{\sigma}-1\right)\{A(H(X, Y)) A(Z)+A(H(X, Z)) A(Y)\}
\end{align*}
$$

Writing two other equations by cyclic permutation of X, Y, Z and subtracting the third equation from the sum of the first two equations and using symmetry of `\(H\) in the first two slots, we get (2.10) \(2` H(X, Y, Z)=-2 e^{\sigma}\{(X \sigma) A(Y) A(Z)+(Y \sigma) A(Z) A(X)-(Z \sigma) A(X) A(Y)\}-\) $\left(e^{\sigma}-1\right)\left[A(Z)\left\{\left(D_{X} A\right)(Y)+\left(D_{Y} A\right)(X)-2 A(H(X, Y))\right\}+A(X)\left\{\left(D_{Y} A\right)(Z)-\left(D_{Z} A\right)(Y)\right\}+\right.$ $\left.A(Y)\left\{\left(D_{X} A\right)(Z)-\left(D_{Z} A\right)(X)\right\}\right]$

This gives

$$
\begin{equation*}
2 H(X, Y)=-2 e^{\sigma}\left[(X \sigma) A(Y) T+(Y \sigma) A(X) T-\left({ }^{-1} G \nabla \sigma\right) A(\mathrm{X}) A(\mathrm{Y})\right]-\left(e^{\sigma}-\right. \tag{2.11}
\end{equation*}
$$

$$
1 D X A Y+D Y A X-2 A H X, Y T+A X D Y T+A Y D X T-A X(-1 G \nabla A Y-A Y(-1 G \nabla A)(\mathrm{X})]
$$

Substitution of (2.11) into (2.5) (a) gives (2.6).

3. Affine connection

Let B be an affine connection in M_{n}, then

$$
\begin{equation*}
B_{X} Y=D_{X} Y+H(X, Y) \tag{3.1}
\end{equation*}
$$

And torsion tensor S of B is given by

$$
\begin{equation*}
S(X, Y)=H(X, Y)-H(Y, X) \tag{3.2}
\end{equation*}
$$

Let us define
(3.3) (a) ` \(H(X, Y, Z) \stackrel{\text { def }}{=} g(H(X, Y), Z)\) and (b) \(` S(X, Y, Z) \stackrel{def}{=} g(S(X, Y), Z)\), Then
(3.4) ` \(S(X, Y, Z)=` H(X, Y, Z)-` H(Y, X, Z)\)

Theorem 3.1 Let B be an affine connection in M_{n} satisfying
(3.5) (a) $\left(d^{`} F\right)(X, Y, Z)=0$
(b) ${ }^{`} S(X, Y, \bar{Z})+` S(Y, Z, \bar{X})+` S(Z, X, \bar{Y})=0$, Then

$$
\begin{equation*}
\left(B_{X}^{`} F\right)(Y, Z)+\left(B_{Y} ` F\right)(Z, X)+\left(B_{Z}^{`} F\right)(X, Y)=0 \tag{3.6}
\end{equation*}
$$

Proof. We have

$$
\begin{array}{rl}
\mathrm{X}(` F(Y, Z)) & =\left(B_{X} ` F\right)(Y, Z)+` F\left(B_{X} Y, Z\right)+` \\
& \left.=\left(D_{X} ` F\right)(Y, Z)+B_{X} Z\right) \\
` & F\left(D_{X} Y, Z\right)+` F\left(Y, D_{X} Z\right)
\end{array}
$$

Writing two other equations by cyclic permutations of X, Y, Z, adding these and using (3.1), (3.3) (a), we get

$$
\begin{gathered}
\left(d^{`} F\right)(X, Y, Z)=\left(B_{X} ` F\right)(Y, Z)+\left(B_{Y} ` F\right)(Z, X)+\left(B_{Z} ` F\right)(X, Y)-` H(X, Y, \bar{Z})- \\
` H(Y, Z, \bar{X})-` H(Z, X, \bar{Y})+` H(X, Z, \bar{Y})+` H(Y, X, \bar{Z})+` H(Z, Y, \bar{X})
\end{gathered}
$$

Using (3.5) (a) and (3.5) (b) in above equation, we get (3.6).

Theorem 3.2 Let B be an affine connection in M_{n} satisfying
(3.7) (a) $\quad\left(B_{X}{ }^{`} F\right)(Y, Z)=0$
(b) ${ }^{`} H(X, Y, \bar{Z})+` H(Z, X, \bar{Y})=` H(Z, Y, \bar{X})$, Then
(3.8) (a) ${ }^{`} F$ is closed if ${ }^{`} H(X, Y, \bar{Z})+{ }^{`} H(Y, Z, \bar{X})+{ }^{`} H(Z, X, \bar{Y})=0$ and
(b) An L-Contact manifold is an L-Cosymplectic if ${ }^{`} H(X, Y, \bar{Z})=0$

Proof. We have

$$
\begin{aligned}
\mathrm{X}(` F(Y, Z)) & =\left(B_{X}{ }^{`} F\right)(Y, Z)+{ }^{`} F\left(B_{X} Y, Z\right)+` \\
& =\left(D_{X} `\right. \\
` & \left.(Y, Z)+B_{X} Z\right)
\end{aligned}
$$

From which, we obtain
(a)

$$
\begin{equation*}
\left(D_{X} ` F\right)(Y, Z)=` H(X, Z, \bar{Y})-` H(X, Y, \bar{Z}) \tag{3.9}
\end{equation*}
$$

Similarly, we can write
(b) $\quad\left(D_{Y}{ }^{`} F\right)(Z, X)=` H(Y, X, \bar{Z})-` H(Y, Z, \bar{X})$ and
(c) $\quad\left(D_{Z}{ }^{`} F\right)(X, Y)=` H(Z, Y, \bar{X})-` H(Z, X, \bar{Y})$

Adding these and using (3.7) (b), we get

$$
\left(D_{X} ` F\right)(Y, Z)+\left(D_{Y} ` F\right)(Z, X)+\left(D_{Z} ` F\right)(X, Y)=0
$$

Consequently, $` F$ is closed. (3.8) (b) follows from (1.5), (3.7) (a) and (3.7) (b).

Let us note one more obvious fact.

Theorem 3.3 Let B be an affine connection in M_{n} satisfying
(3.10) (a) $\quad\left(B_{X}{ }^{`} F\right)(Y, Z)=0$

An L- Contact manifold is an L-Cosymplectic manifold. Also ${ }^{`} F$ is closed if

$$
` S(X, Y, \bar{Z})+` S(Y, Z, \bar{X})+` S(Z, X, \bar{Y})=0,
$$

Theorem 3.4 Let B be an affine connection in M_{n} satisfying

$$
\begin{equation*}
` H(X, \bar{Y}, \bar{Z})+` H(X, \bar{Z}, \bar{Y})=0, \text { Then } \tag{3.11}
\end{equation*}
$$

(3.12) (a) $\left(B_{X} g\right)(\bar{Y}, \bar{Z})=0$
(b) $\quad g\left(B_{X} \bar{Y}, \bar{Z}\right)=g\left(D_{X} \bar{Y}, \bar{Z}\right)-` H(X, \bar{Z}, \bar{Y})$

Proof. We have

$$
\mathrm{X}(g(\bar{Y}, \bar{Z}))=\left(B_{X} g\right)(\bar{Y}, \bar{Z})+g\left(B_{X} \bar{Y}, \bar{Z}\right)+g\left(\bar{Y}, B_{X} \bar{Z}\right)
$$

$$
=g\left(D_{X} \bar{Y}, \bar{Z}\right)+g\left(\bar{Y}, D_{X} \bar{Z}\right)
$$

Using (3.1), (3.3) (a) and (3.11), we get (3.12) (a). (3.12) (b) follows from (3.1), (3.3) (a) and (3.11).

Theorem 3.5 Let B be an affine connection in M_{n} satisfying
(3.13) (a) $\quad\left(B_{X}{ }^{`} F\right)(\bar{Y}, \bar{Z})=0$
(b) ${ }^{`} H(X, \bar{Y}, \overline{\bar{Z}})+` H(X, \bar{Z}, \overline{\bar{Y}})=0$, Then
an L- Contact manifold is an L-Cosymplectic if ${ }^{`} H(X, \bar{Y}, \overline{\bar{Z}})={ }^{`} H(X, \bar{Z}, \overline{\bar{Y}})$
Proof. Inconsequence of (3.13) (a), we have

$$
\begin{aligned}
X(` F(\bar{Y}, \bar{Z})) & =` F\left(B_{X} \bar{Y}, \bar{Z}\right)+` F\left(\bar{Y}, B_{X} \bar{Z}\right) \\
& =\left(D_{X} ` F\right)(\bar{Y}, \bar{Z})+` F\left(D_{X} \bar{Y}, \bar{Z}\right)+` F\left(\bar{Y}, D_{X} \bar{Z}\right)
\end{aligned}
$$

Result follows from (3.1), (3.3) (a) and (3.13) (b).

References:

[1] Matsumoto, K. and Mihai, I., 1988, On a certain transformation in a Lorentzian Para-Sasakian Manifold, Tensor N. S., Vol. 47, pp. 189-197.
[2] Mishra, R.S., 1972, Affine connexions in an almost Grayan manifold, Tensor N. S., 23, pp. 317-322.
[3] Suguri T. and Nakayama S., 1974, D-conformal deformation on almost contact metric structures, Tensor N. S., 28, pp. 125-129.

[^0]: *D S Institute of Technology \& Management, Ghaziabad, U.P. - 201007

